РОТОРНО-ВИНТОВЫЕ ЛЕДОКОЛЫ

В зимний период речной флот отправляется на зимовку в затоны и на судоремонтные заводы, где затрачивается немало усилий на околку судов, т.е. на освобождение их ото льда. Это делается для предотвращения деформации корпусов судов под давлением льда. Особенно велика энергоемкость таких работ на северных реках нашей страны, где толщина льда иногда превышает 1,5 м. Зачастую операции по околке производятся вручную.

Попытки создания средств механизации разработки льда предпринимались уже в начале XX в. Около ста лет назад применялись машины на канатной тяге с дисковыми пилами для резки льда. Одна из подобных конструкций 1920-х гг. представлена на рисунке. Однако широкого распространения они не получили.

С 1950 г. в лаборатории по разработке льда, снега и мерзлого грунта (позднее — ОКБ «РАЛСНЕМГ») Горьковского политехнического института (ГПИ им. А.А. Жданова) под руководством лауреата Сталинской премии Аркадия Федоровича Николаева (1914—1987) велось проектирование специальных ледово-фрезерных машин. Одной из первых установок, поступивших в опытную эксплуатацию, стала ГПИ-34 на колесном ходу. Колесный движитель с коэффициентом сцепления 0,25 обеспечивал тяговое усилие 6—7 кН, что позволяло резать лед толщиной до 1 м. Но из-за малой производительности эффективность ГПИ-34 оказалась весьма низкой.

Дальнейшим развитием этого направления стала машина ГПИ-41, или ЛФМ-ГПИ-41. Она представляла собой гусеничный транспортер ГАЗ-47, оборудованный фрезерной пилой. Несмотря на высокие технико-экономические показатели, ГПИ-41 обладала рядом недостатков. В частности, она была неустойчива в процессе фрезерования льда, отличалась недостаточным тяговым усилием для силового резания (осуществлялось с большими подачами и небольшими скоростями вращения фрезы, обрабатывающей лед), не могла самостоятельно выйти из воды на лед в случае его проламывания.

Для устранения перечисленных недостатков в ОКБ «РАЛСНЕМГ» проделали большую теоретическую и исследовательскую работу.



Выход нашли во внедрении в конструкцию новых ледово-фрезерных машин роторно-винтовых движителей. В1964 г. изготовили модель машины на роторно-винтовых движителях, которая приводилась в движение от серийного электродвигателя постоянного тока с последовательным возбуждением. Мощность двигателя составляла 600 Вт при частоте вращения 16000 об/мин. Электродвигатель был запитан от аккумуляторной батареи с рабочим напряжением 24 В.

На удлиненном валу электродвигателя была закреплена цилиндрическая шестерня, которая соединялась со второй такой же шестерней, свободно вращающейся на валу. Через кулачковые муфты вращение передавалось на конические шестерни главной передачи, а затем на конические шестерни бортовых редукторов. Конические шестерни бортовых редукторов были жестко связаны с роторно-винтовыми движителями. Для поворота модели служили кулачковые муфты. При отключении одной из муфт соответствующий движитель прекращал вращение, и модель поворачивалась в сторону невращающегося движителя. Передаточное число трансмиссии модели составляло 11,56. Общая масса модели достигала 14,5 кг.

На испытаниях модель развила тягу на снегу 10,2 кг при погружении движителей в снег на глубину 36 мм. Коэффициент сопротивления движению составил 0,22, а коэффициент сцепления — 0,92. Модель показала хорошие тяговые и сцепные качества, плавучесть, способность самостоятельно выходить из полыньи на лед.

В 1967 г., под впечатлением от успешных результатов испытания модели, в лаборатории механизации ГПИ на базе транспортера ГАЗ-47 изготовили роторно-винтовую ледово-фрезерную машину ЛФМ-РВД-ГПИ-66. Над ее созданием трудились А.Ф. Николаев, старшие инженеры Л.Н. Варначев, В.Н. Бибиков, Планкин, аспиранты А.С. Слюсарев, А.П. Куляшов, старший лаборант А.А. Мейер, механик Я. Моничев.



ЛФМ-РВД-ГПИ-66 оснащалась фрезерной головкой, смонтированной в задней части машины на специальном кронштейне. Она служила для прорезания сквозных щелей во льду при околке судов, а также для получения сухих траншей при выполнении выморозочных работ, которые необходимы в процессе подготовки судна к ремонту без его подъема в док.

В передней части вездехода монтировалась шнекороторная снегоочистительная установка, которая являлась исполнительным органом при очистке трассы фрезерования, дорог и территории затона от снега. Вместо шнекороторной установки могла навешиваться бульдозерная снегоочистительная установка. Она предназначалась для расчистки трассы фрезерования на 4-й рабочей или 1-й транспортной скоростях.

Редуктор-ходоуменшитель, установленный на коробке передач ГАЗ-47, служил для получения пониженных рабочих скоростей машины, необходимых как при фрезеровании льда, так и при уборке снега.

Коробка отбора мощности фланцевалась к коробке передач ГАЗ-47 с правой стороны и служила для отбора мощности на привод фрезы или шнекороторной снегоочистительной установки. Промежуточный двухступенчатый редуктор, размещенный на специальном кронштейне в кузове, предназначался для снижения оборотов при выборе режима работы фрезерной установки.

Гидросистема навесного оборудования состояла из маслонасоса с приводом от маслобака, распределителя, трех гидроцилиндров, трубопроводов и аппаратуры и служила для поворота фрезерной и шнекороторной снегоочистительной установок в рабочее и транспортное положение.

Редуктор привода роторно-винтового движителя предназначался для передачи крутящего момента от бортовой передачи транспортера на роторно-винтовой движитель. Редуктор привода, укрепленный на корпусе бортовой передачи, представлял собой две пары конических шестерен с суммарным передаточным числом 1,0.

Роторно-винтовой движитель обеспечивал движение машины по заболоченной местности, воде или снегу, а также дополнительную плавучесть. Каждый шнек представлял собой цилиндрическую трубу из тонкой нержавеющей стали толщиной 2,5 мм, закрытую с торцов сферическими головками. На поверхности этой трубы были наварены по винтовой линии конусообразные реборды. Для увеличения жесткости оболочки внутренний объем движителя заполнили кольцами из пенопласта. Переднюю и заднюю головки выполнили вращающимися для облегчения самостоятельного выхода машины из полыньи на лед. Шаг винтовой линии (890 мм) и угол навивки (25а30') позволяли машине двигаться со скоростью до 20 км/ч. Высота винтовых грунтозацепов составляла 100 мм.

К положительным особенностям разработанной конструкции можно отнести то, что замена гусеничного движителя ГАЗ-47 на роторно-винтовой не представляла большой сложности. Детали базового транспортера при этом нуждались в минимальных переделках. Общая масса роторно-винтового двигателя оказалась на 357 кг меньше массы гусеничного движителя ГАЗ-47. Изготовление роторно-винтовых движителей допускалось практически на любом ремонтно-механическом заводе при наличии несложного оборудования. В случае необходимости использования вездехода для продолжительных поездок по грунтовым дорогам его можно было сравнительно быстро переоборудовать снова на гусеничный ход, а на заболоченной местности с преодолением водных преград, а также в зимний период его эксплуатация была целесообразна именно на роторно-винтовых движителях.

Первые испытания ЛФМ-РВД-ГПИ-66 начались 29 декабря 1967 г.



В 3 км от г. Горького машину в течение 30—45 мин обкатывали в поле на снегу глубиной 400—600 мм. Затем прошла проверка на проходимость по глубокому снегу. Максимальная скорость движения при этом составила 7—8 км/ч. Выяснилось, что для движения по глубокому снегу с большей скоростью машине не хватало мощности. Глубина погружения шнеков равнялась 250—350 мм. Машина уверенно двигалась на 1-й и 2-й передачах.

30 декабря состоялись испытания на р. Волге в районе речного вокзала г. Горький. При температуре -8°С и температуре воды +4'С машина свободно преодолела прибрежный снег глубиной 150—350 мм и вошла в воду. Ватерлиния соответствовала теоретически рассчитанной, скорость движения на воде составила 8—10 км/ч. После испытаний на воде ЛФМ-РВД-ГПИ-66 самостоятельно выбралась на лед и своим ходом вышла на берег. Однако для более уверенного движения по воде центр тяжести машины следовало сместить несколько назад.

3 января на берегу р. Волги были проведены сравнительные тяговые испытания ЛФМ-РВД-ГПИ-66 и гусеничного транспортера ГАЗ-47 на льду, покрытом снегом глубиной 50—150 мм, и на снежной целине глубиной 350—600 мм. На глубоком снегу ЛФМ-ГПИ-66 на 3-й передаче развила скорость 13 км/ч. Для определения максимальной силы тяги машина буксировала трактор С-100.

Испытания показали, что ЛФМ-ГПИ-66 обладает хорошими тяговыми качествами, значительно более высокими, чем ГАЗ-47. Наглядно подтвердилось, что при движении по льду и глубокому снегу использование роторно-винтового движителя для технологических машин (в том числе и ледово-фрезерных, требующих больших тяговых усилий) являлось более предпочтительным.

Ледово-фрезерная машина ЛФМ-ГПИ-66 на роторно-винтовых движителях продемонстрировала хорошую устойчивость в процессе резания льда, высокую силу тяги, а также полную безопасность в работе.



При попадании в полынью шнекоход самостоятельно выходил из воды на лед.

Всесторонние испытания роторно-винтового вездехода проводились в два этапа: летом 1968 г. без навесной фрезерной установки и зимой 1968—1969 гг. с фрезерной установкой. Исследовались проходимость, управляемость, тягово-сцепные качества, сопротивление движению, влияние навесной фрезерной установки на устойчивость прямолинейного движения машины.

При движении по льду коэффициент сцепления роторно-винтового движителя со льдом составил 0,865, а тяговое усилие машины — 3580 кгс. На воде относительное тяговое усилие ЛФМ-ГПИ-66 достигло 8 кгс/л.с., что значительно превысило величину относительной силы тяги машин с гусеничными движителями, для которых она составляла 4—5 кгс/л.с.

Стоит напомнить, что сопротивление движению значительно зависит от величины коэффициента трения материала движителя о грунт. На более плотных грунтах сопротивление движению ЛФМ-ГПИ-66 оказалось значительно больше, чем у гусеничного транспортера: на льду величина коэффициента сопротивления роторно-винтового вездехода составила 0,12—0,16, а у гусеничного — 0,08—0,11.

Коэффициент сопротивления повороту возрастал с увеличением плотности среды (за исключением льда, где коэффициент был несколько меньше, чем у гусеничной машины). Особенностью поворота ЛФМ-ГПИ-66 являлось влияние направления вращения роторов на радиус поворота, которое возрастало с увеличением смещения центра давления от геометрического центра. В частности, при направлении вращения роторов внутрь (в точке контакта с грунтом) и смещении центра давления вперед вездеход поворачивался с переменным радиусом, больше теоретического радиуса; при вращении наружу поворот происходил с переменным радиусом, меньше теоретического.

На воде маневренность ЛФМ-ГПИ-66 характеризовалась минимальным диаметром циркуляции, который при скорости 9 км/ч равнялся 22-24 м.

Боковой увод машины в транспортном режиме движения происходил под действием внешних факторов. С увеличением прочности грунта и увеличением сцепления с ним увод уменьшался. Например, на льду увод составил 0,55—0,65 м на длине 50 м.

Так как коэффициент сопротивления повороту на льду машины ЛФМ-ГПИ-66 был несколько меньше, чем у гусеничного вездехода, чувствительность ее к изменениям нагрузки на рабочем органе оказалась выше. Величина максимального увода на 4-й передаче находилась в пределах 0,37—0,4 м на длине 10 м при толщине льда 670—750 мм.

Увеличение тягового усилия ЛФМ-ГПИ-66 по сравнению с однотипной гусеничной ЛФМ-ГПИ-41 позволило обеспечить более экономичное силовое резание льда, чем скоростное (производится с малыми подачами, но с большими скоростями вращения фрезы). В частности, удельная энергоемкость силового резания была в 1,35—1,42 раза меньше, чем скоростного.

Зимой 1969—1970 гг. ЛФМ-ГПИ-66 испытывалась в качестве ледорезной машины для подледного лова рыбы. Она обеспечивала доставку бригады рыбаков и электромеханического прогона к месту лова. Режущим органом (пальцевой фрезой) прорезались контуры входной и выходной майн (отверстий для закладки и выборки невода), а также делались прорези во льду для протягивания шнура подо льдом.

Вырезанный лед удалялся из майн с помощью буксирного троса. В первую от входной майны прорезь опускался гидроакустический маяк. Протягивание шнура-кабеля на расстояние 200—250 м подо льдом до выходной майны осуществлялось с помощью электромеханического прогона, самонаводящегося на маяк гидроакустической следящей системой.

Электромеханический прогон двигался в воде подо льдом за счет двух гребных винтов, а его поворот производился за счет остановки одного из винтов. Питание прогона осуществлялось по плавающему кабелю.

Испытания показали, что применение ледово-фрезерных машин ЛФМ-ГПИ-41 и ЛФМ-РВД-ГПИ-66 для подледного лова рыбы позволяет увеличить производительность труда рыбаков в 2,5 раза за счет сокращения времени работ на одном месте с 7—8 ч до 2,5—3 ч. При этом гарантировалась полная безопасность работ.

ЛФМ-РВД-ГПИ-66, обладая несколько меньшей транспортной скоростью (до 20 км/ч), имела преимущества перед ЛФМ-ГПИ-41, так как специально была оборудована лебедками для выбирания сетей и оснащена резервуаром для выловленной рыбы.



При попадании в полынью ЛФМ-РВД-ГПИ-66 самостоятельно выходила на лед, свободно преодолевала прибрежные заболоченные участки с тонким льдом.

Опытная эксплуатация ЛФМ-ГПИ-66 проходила на озерах Казахстана, где машина продемонстрировала высокие транспортные качества в сложных дорожных условиях.

На основании проведенных исследований в ОКБ «РАЛСНЕМГ» по заказу Министерства речного флота был спроектирован и в 1971 г. построен опытный образец новой ледорезной машины — ЛФМ-РВД-ГПИ-72. У нового «ледокола» для увеличения тягового усилия, коэффициента сопротивления повороту и улучшения стабилизации направления движения движитель каждого борта выполнили из двух равных по длине роторов, винтовые реборды которых имели различное направление. При испытаниях на проходимость скорость движения этой машины на снегу составила 17 км/ч, по воде — 12 км/ч, максимальная сила тяги на крюке — 36,5 кН (3650 кгс). Угол преодолеваемого подъема снежного склона достиг 35е. ЛФМ-РВД-ГПИ-72 успешно прошла государственные испытания и была рекомендована к серийному производству.

Положительные качества роторно-винтового движителя наиболее полно были реализованы в созданной в 1981 г. в ОКБ «РАЛСНЕМГ» самоходной ледорезной установке СЛУ-119, предназначенной для вскрытия ледового покрова рек и водоемов в средней полосе нашей страны. Обладая хорошей маневренностью и достаточной скоростью, эта установка имела небольшие габариты, позволяющие при необходимости перевозить ее к месту работы в кузове грузового автомобиля.

Ледорезные машины ОКБ «РАЛСНЕМГ» различных моделей, изготовленные в единичных образцах или небольшими партиями, нашли применение в различных отраслях народного хозяйства, получив высокую оценку. А.Ф. Николаеву была присвоена степень доктора технических наук без защиты диссертации по совокупности выполненных работ. Бывший автогонщик и испытатель автомобилей, Почетный полярник СССР, Заслуженный деятель науки и техники РСФСР А.Ф. Николаев до самых последних дней активно работал и был полон энергии и творческих планов. Но, к сожалению, он не успел подготовить достойного преемника. Новый руководитель ОКБ не сумел заинтересовать потенциальных заказчиков и не обеспечил притока молодых специалистов. После скоропостижной смерти А.Ф. Николаева в 1987 г. конструкторское бюро пришло в упадок.